

ELECTRIC VEHICLES MADE BY LASERS

Dr. Günter Ambrosy Industry Management Automotive E-mobility

Ditzingen, 20.02.2019

Confidential

Laser Applications

Broad spectrum: Applications with TRUMPF lasers

CARS – made by laser

In the Automotive production process there are many established laser applications with increasing numbers in electrification

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

- Confidential
- 20.02.2019

Application fields for lasers in E-mobility

The laser offers numerous industrial solutions in manufacturing fields of EV

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Battery Cell: Cutting of electrode foil

Electrode shaping by cutting double sided coated foils (coated Al/Cu)

Description:

Contour cut of single electrode sheets by mechanical punching process (0.2 s) or laser cut (>1000mm/s)

Requirements:

- Stable geometry of the cutting edges
- Big scanning field, cutting speed (> 1.000mm/s)
- Burr <5um, no particles on the surface
- HAZ 50-200µm (loss of active surface)

Recommendation:

- 200W ns pulsed IR laser (TruMark7050, SPI,.)
- TruFiber2000 as cw solution and/or TruMicro5000 (fs/ps) possible.

Battery Cell: Foil stack / tab welding

superior electric conductivity (lowest electric resistance) by laser joining

Description:

Contacting of electrode foil stacks

Requirements:

- Perfect contacting of foils (low electrical resistance)
- Low mechanical and thermal stress during welding
- No spatters
- Limited accessibility and speed

Recommendation:

 TruDisk1020 (515nm, 1kW, cw) at high welding speed up to 20 m/min

Battery Cell: Welding of prismatic battery housing

Media tight sealing with TruDisk

7

Battery cell: Busbar welding

Superior electric conductivity (lowest electric resistance) by laser joining

Description:

Welding of busbar connections < 3mm thickness

Material: Al ; Cu ; Al/Cu TruFiber2000. Cu-Cu

Requirements

- Electrical contact, mechanical strength
- No spatters
- Low HAZ

Recommendation:

- TruFiber2000 + PFO20
- Welding speed approx. 25 mm/s
- Wobbling

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Battery cell: Bus bar welding

Welding of thick (> 3mm) Aluminum/Cu Busbars

Description:

Welding of thick AI and Cu (PHC and ETB) busbars.

Requirements:

- Peel-off-force > 5kN
- Welding depth about 3.3mm
- No spatters

Recommendation:

- Laser cleaning of surface prior welding is highly recommended TruMark xx.
- Welding with TruDisk10000/11000 + D70 + LLK200um
- Welding speed up to 4m/min
- Peak temperatures < 140°C achievable.
- Cu-PHC welding surface is more smooth

Battery Cell: Welding of dissimilar contact tabs

TRUMPF

Joining of electrical connection of thin dissimilar materials

		F
	0.56 mm	L
0,36 mm	2 2 3 mm 2 30 3 0.3 mm 2 2 2 3 0 3 0 3 mm	(
		N

Material	 Cu / Al, approx. 0,3 mm 		
Requirements	 joining of dissimilar material electrical contact mechanical strength partial penetration 		
Laser	 TruDisk 		
Optics	• PFO • BEO		
Customer Value	 flexibility in welding geometry no porosity, no cracks clean working process little space requirements no mechanical stress 		

Application fields for lasers in E-mobility

The laser offers numerous industrial solutions in manufacturing fields of EV

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Electrified Powertrain: Welding of hair pins:

TRUMPF

Hairpin designed e-drives are often used in electrified drivetrains

	Material	 Cu-Cu; 2x4mm to 6x6mm
	Requirements	electrical contactdefined welding beadfull automation, no scrap
time = 0,12s	Laser	 TruDisk + PFO33 and VisionLine smart sensor
	Customer Value	 perfect connection no spatter VisionLine → fully automated

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Laser Welding of Hairpins

Paint stripping and welding of hairpins With the TruLaser Cell 3000 and image processing VisionLine

Application fields for lasers in E-mobility

The laser offers numerous industrial solutions in manufacturing fields of EV

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Power Electronics: Copper welding with BrightLine Weld

Fast welding with reduced spatter formation with high power IR Lasers

Cu-Sn galvanized 2-8µm

Penetration depth: 1,63mm $P_{av} = 5,7 \text{ kW}$

- TruDisk 6001 with PFO33 + BLW
- Speed: 10m/min
- No pores, almost spatter free

BrightLine Weld for thick materials, large welded areas,

Excursus: BrightLine Weld – Functional Principle

Flexible power distribution for optimal application results

- Patented waveguide layout of TRUMPF 2in1-fiber
- Flexible distribution of laser power into inner and outer fiber core out of one single laser source
- Superposition of two beam into the process zone
- → Adjustment to application specific optimum

- 1: laser beam coupled into an inner fiber core
- 2: laser beam coupled into coaxial outer fiber core

Excursus: BrightLine Weld

Beneficial in steel, aluminum & copper

Standard Setup: Cu; feet rate 10 m/min

New: BrightLine Weld

- High speed, high quality laser welding
- Almost spatter free

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

Confidential

20.02.2019

Power Electronics: copper contacts

97% less spatters by welding with green laser compared to IR.

Description:

Welding of copper contacts Cu-ETP less than 0.8 mm welding depth.

Requirements

- Less short circuit faults
- Less pores/spatters
- Less contamination of optics and fixtures
- Less subsequent process control steps.

Recommendation:

TruDisk Pulse 421 + PFO20-2/D70
 + VisionLine-Detection

Confidential

Contacting of Copper on Ceramic PCB Boards

DCB Spot welding with pulsed green laser -1 pulse $\sim 5 - 10$ ms

Precise spot welding:

- reproducible penetration depth
- Long pulse welding (50ms) for short lines possible

Copper welding with cw green laser

Lasers and tools for E-Mobility & Electronics

Power of Choice! - Many tools with the same customer benefit?

ELECTRIC VEHICLES MADE BY LASERS, Günter Ambrosy

22

20.02.2019

Summary

E-Mobility made with TRUMPF Laser

- Industrial solutions for manufacturing of electrified vehicles xEV
- Reliable joining and sealing processes in battery cell assembly
- Highest electrical conductivity and mechanical strength of busbar connections, and hairpin welding
- Spatter free joining of copper

TRUMPF Laser- und Systemtechnik GmbH

Thank You

Dr. Günter Ambrosy Industry Manager Automotive E-mobility +49 7156 303-34605 guenter.ambrosy@trumpf.com