Ultrashort pulsed laser ablation for decollation of solid state lithium ion batteries

Patrick Gretzki – LSE 2019

Solid state lithium batteries

Overview

- Many applications require high energy density
 - Mobile computing, IoT, power tools, electro-mobility
- Solid state electrolyte
 - Li₇La₃Zr₂O₁₂ (LLZ) / Li₁₀GeP₂S₁₂ (LGPS)

Solid state lithium batteries

Advantages

- High energy density
 70% better in volumetric energy density
- Safety No liquid electrolyte
- Long cycle life more then 1000 full cycles (23000 cycles target)
- Wide operation window
 Temperature range -20°C..60°C (peak 150°C)
- High discharge rates Quick charge with 50C
- Low self-discharge only 0.5% charge loss

Toyota solid state battery prototype

Solid state lithium batteries

Challanges

Current research topics

- Developing better conducting solid electrolytes
- Designing improved electrode/electrolyte interfaces to reduce interfacial resistance
- Improving Li-ion conductivity in active materials.

Current production challenges

- Price for production -150 \$/kWh
- Reduce thickness of separator
- High throughput production Roll2Roll

Current production of thin film batteries

- Comparable to semiconductor industry with batch-wise and discontinuous deposition technology
- Small production and pilot lines
 - Commercially available:
- 0.7 mAh battery: 11 US\$
- Tesla Model S (85kWh)

 \rightarrow cost ~ 1.4 Bil US\$ (1.2 Bil €)

STMicroelectronics EFL700A39 25.4mm x 25.4mm 200µm thickness 200mg weight

Continuous production of thin film batteries

Decollating of SSLBs – Challenge & Solution

- Changing from batch-wise process to a roll-to-roll production
- Continuous deposition with high rates possible in roll-to-roll
- New processes and equipment are necessary

Ultra short pulse micro processing

SSLB - ablation and cutting without short circuits

Conventional cutting (cw-laser/knife) can lead to short circuits when anode and cathode layer get in contact through melt or residues

Solution: Layer-by-layer ablation followed by a precise cut

USP laser material processing Process basics

Time Scales for Energy Transfer

- Photon Electron: <10 fs</p>
- Electron Electron: <100 fs</p>
- Electron Lattice: 1-10 ps

Comparison Ultrafast vs. short pulse lasers

- No interaction of radiation with vapour and melt
- Ablation mainly by vapourisation
- Minimal thermal influence

USP laser material processing Results in material processing

10 ns

100 fs

USP laser material processing Materials and processes

Thin film ablation

Flexible PV (OPV, CIGS)	Thi	i n film PV on glass (Si, CdTe, CIGS)	OLED lighting (on glass)	Displays on glass	Organic electronics (sensors, circuits)	Thin film batteries
P1 P2 P3 patterning			Removal of barrier layers	Isolation scribing		Cathode surface structuring
Edge deletion			TCO structuring	Contact opening		Decollating
Polymer weldin for encapsulatio	ng on	Glass welding for encapsulation				Drilling
	TCO annealing					
		Transfer printing of metal grids				

All processes highlighted in green include some form of selective ablation

Discoloration due to ablation of SSLB with nanosecond Pulses

- Irradiation the upper layers of the thin film battery with nanosecond-laser
- LiPON and Lithium absorb less than 8% of the incoming laser radiation
- Different thermal expansion behavior of LiPON and LiCoO2 layer lead to a detachment of the Lithium and LiPON layers from the underlying LiCoO2 layer

27ns

2-3.10⁸ W/cm²

Ablation of SSLB with nanosecond Pulses and increasing repetitions

1.9·10⁸ W/cm²

27ns

- Ablation of lithium cobalt oxide-cathode layer and subsequently the aluminum substrate by increasing repetitions
- Ablation is characterized by large outbreaks on both sides of the ablation line
- High thermal impact and low peak intensity lead to an undefined ablation of the lithium-anode layer and the LiPON-electrolyte due to photomechanical ablation

3 µm Li

4 µm LiCoO2

10ps

1.6·10¹¹ W/cm²

1 Pass6 Passes12 PassesLithiumLiCoO2LiCoO2LiCoO250 μmLiCoO2LiCoO2LiCoO2

Ablation of SSLB with picosecond pulses and increasing repetitions

- Irradiation of the upper layers of the thin film battery with picosecond-laser
- In contrast to the ablation with nanosecond pulses, a controlled layer-wise ablation can be realized
- Increasing number of passes results in a gradual removal of the lithium cobalt oxide layer (black)

7.3·10¹² W/cm²

200fs

Ablation of SSLB with femtosecond pulses and increasing repetitions

- Irradiation of the upper layers of the thin film battery with femtosecond-laser
- LiPON-electrolyte surface is characterized by a multitude of small cracks
- Lower heat generation in the LiCoO₂-layer compared with picosecond ablation
- Photomechanical ablation mechanism is less predominant than in the case of picosecond irradiation

Comparison of Ablation of SSLB with Picosecond and Femtosecond pulses (10 Passes)

- Contour-accurate ablation can be achieved by using femtosecond pulses as opposed to the ablation with pico/femto second pulses which is characterized by small outbreaks near the rim
- The use of nanosecond pulses results in **blast-off ablation** leading to very broad areas with uncontrolled blasting of the layers

Comparison of Ablation of SSLB with Picosecond and Femtosecond pulses (1 pass)

- Glass-like LiPON cannot be removed in a controlled manner with pulses > 10 ps
 - LiPON-surface irradiated with 10 ps pulses consists of many large fragments with no change in structure and texture
- LiPON-surface irradiated with 200 fs pulses shows discoloration and micro-cracks

SSLB - ablation and cutting without short circuits

Laser ablation in inert atmosphere (0.5ppm Argon)

Geometrically flexible cutting

(Exposed to air for imaging)

SSLB - ablation and cutting without short circuits

Process variation for cutting of full stack

SSLB - ablation and cutting without short circuits

Rim of the battery

SSLB - ablation and cutting without short circuits

Processed full battery stack

Function test of decollated battery

Outlook Future processing of SSLBs

Many thanks for your kind attention!

SAVE THE DATE

www.ilt.fraunhofer.de/lse

LSE 2020 LASERSYMPOSIUM ELEKTROMOBILITÄT

12.–13. FEBRUAR 2020

Contact details

Dipl.-Phys. Patrick Gretzki +49 241 8906 - 8078 patrick.gretzki@ilt.fraunhofer.de

www.ilt.fraunhofer.de

© Fraunhofer ILT