Lasersymposium Elektromobilität 2019

Aachen, 20.02.2019 Dr. Michael Stapelbroek, Department Manager Battery Systems

- Independent engineering company
- Supporting engineering developments from innovations up to SOP
- Optimizing customers products and processes
- ~630 M€ revenue expected in 2018
- Close to our customers:

5900 +

40+

subsidiaries on four continents

test cells for engines, transmissions, drivelines, e-machines, batteries

> employees globally

Battery development is driven by energy content, lifetime, safety and fast charging

Image sources: Phoenix Contact, Tesla, insideevs.com

Stapelbroek, Dr. Michael, 2018_02_20_ILT_Prototyping_von_Batterien.pptx, 20. Februar 2019

FEV

In 2008 FEV registered 12 pure electric vehicles and had a market share of 5% which means to be German market leader

BATTERY DEVELOPMENT FOR SMARTWHEELS 2008

In 2008 the underfloor battery concept was innovative and new to the e-mobility community

BATTERY DEVELOPMENT FOR SMARTWHEELS 2008

In 2008 the underfloor battery concept was innovative and new to the e-mobility community

BATTERY DEVELOPMENT FOR SMARTWHEELS 2008

Requirements & Timing Typical timeline of prototyping project

Requirements & Timing Typical cyclic workflow for requirements engineering

CELL CHARACTERIZATION CAPABILITIES

FEV Database contains information from various sources and displays market trends and measurement results

BENCHMARK & DATABASE RESULTS: RAGONE DIAGRAM (GRAVIMETRIC)

Standard design processes and . . adaptable BOM

Selection and availability of an appropriate cell

Key points

- Close interaction of design and simulation team (one room)
- Rapid prototyping manufacturing processes and prototype supplier network

DESIGN - SIMULATION - PROCUREMENT

and project center

Key points for prototyping design are fast design processes, cell availability and project center

EXAMPLE OF 48 V PROTOTYPE (FINAL 3D CAD & 2D DRAWINGS)

Capacity:	5 Ah
Energy content:	230 Wh
Nom. Voltage (Pack):	46 V
Max. Current (Nom.):	50 A
Peak Power (3s):	10 kW
Capacity:	20 Ah
Capacity: Energy content:	20 Ah 920 Wh
Capacity: Energy content: Nom. Voltage (Pack):	20 Ah 920 Wh 46 V
Capacity: Energy content: Nom. Voltage (Pack): Max. Current (Nom.):	20 Ah 920 Wh 46 V 100 A
Capacity: Energy content: Nom. Voltage (Pack): Max. Current (Nom.): Peak Power (3s):	20 Ah 920 Wh 46 V 100 A 20 kW

FEV uses an in-house BMS Hard- and Software for flexible and fast implementation in prototype projects

BATTERY MANAGEMENT SYSTEMS

FROM INTAKE TO WORKSHOP

Assembly and Build-up

EXAMPLE: ASSEMBLE MODULE ROW

Tightening torque: max. 10 Nm + screw locking lacquer

ADVANCED PROTOTYPE METHODS

3D Printing – Support for small plastic prototype parts

- 3D in house printing for small plastic prototype parts, such as:
- > module cases
- Brackets for prototype component and vehicle build
- > isolators for high voltage equipment

E/E Wiring Harness Development

FROM CONCEPT TO PROTOTYPE HARDWARE

Digital Wiring Harness Mock-Up

- Design of low and high voltage harness CAD Modell
- Static and dynamic package investigation
- Harness length input for 2-D manufacturing boards

Physical Wiring Harness Mock-Up

- Assembly of Prototype Wiring Harness on Breadboard
- Testing at battery test bench (If needed)
- Battery Integration
- Testing of Wiring Harness in battery environment

Production Preparation

- Bill of Material
- Connections (Pin to Pin List)
- Cables (types, diameter, length, colors)
- Connectors

Prototype Battery Testing

DV-TESTS TO ENSURE BASIC FUNCTIONALITY AND SAFE OPERATION

Prototype Battery Testing

EXAMPLE MECHANICAL TESTING ON MODULE LEVEL

Performance of Shock & Shaker tests in three dimensions, with and w/o climatic chamber

Storage & Transportation

VARIOUS SOLUTIONS FOR PROTOTYPE STORAGE AND TRANSPORTATION

- Identification of the substance
- Hazards, Composition of Ingredients,
- First aid, fire fighting information
- Regulatroy information
- Sea shipping: sealing and desiccant
- Prototypes only in transport boxes according to UN regulation.
- Country specific requirements on packaging and labels

Selected Battery Development Projects

UNDERFLOOR EV BATTERY DESIGN FOR TIER 1 SUPPLIER

Scope of Work

- Cell selection on basis of FEVs Cell data-base
- Pack layout (design and E/E)
- Thermal and electrical simulation
- BMS hard- and software development
- Functional and HV safety
- Build-Up and Vehicle integration
- Verification & Validation on test bench and road

FEV has developed a HV prototype battery system for demonstration of TIER 1 battery production capabilities

MODULE FOR UNDERFLOOR EV BATTERY DESIGN FOR TIER 1 SUPPLIER

Specification

- 36 cells in 3p12s configuration
- Voltage: 44,4 V (nominal)
- Energy: 3,6 kWh
- Weight: ca. 18,5 kg
- Dimensions: 371,1 x 313 x 109 mm (L x B x H)

FEV involvement:

Development of prototype battery pack with BMS incl. design, simulation, build-up, testing

Rheinmetall Automotive involvement:

Design, Configuration

- Most important requirements of prototype battery systems are
 - Timing
 - Performance
 - Safety
 - Costs
- Availability of adequate battery cells is challenging and their procurement is time consuming
- A minimum of tests need to be performed due to safety reasons
- High quality is needed to fulfill customer needs

Lasersymposium Elektromobilität 2019

Aachen, 20.02.2019 Dr. Michael Stapelbroek, Department Manager Battery Systems

