Ultrakurzpuls-Laserbearbeitung

Unser Leistungsangebot

Aufgrund der sehr kurzen Licht-Materie-Wechselwirkungszeiten und der hohen Intensitäten wird durch den Einsatz von ultrakurz gepulster (UKP) Laserstrahlung die präzise und nahezu materialunabhängige Lasermaterialbearbeitung bei vernachlässigbarem Wärmeeintrag in das Werkstück ermöglicht. So können auch schwer zu verarbeitenden Werkstoffen wie Carbide, Keramiken und Gläser hochpräzise bearbeitet werden.

Am Fraunhofer ILT werden UKP-Strahlquellen entwickelt, die anwendungsspezifisch optimierte Wellenlängen, Leistungen oder Pulsfrequenzen zur Verfügung stellen. UKP Laserstrahlung wird zum Strukturieren von Oberflächen, das Bohren und Schneiden von Präzisionsbauteilen oder dem selektiven Dünnschichtabtrag genutzt. Durch unterschiedliche Prozesse lassen sich hier beispielsweise präzise Bohrdurchmesser im Mikrometerbereich oder besonders hohe Bohrraten realisieren. Durch den geringen Wärmeeintrag, und die damit verbundene Vermeidung von Schmelzfilmen, können Strukturgrößen bis in den Sub-Mikrometerbereich realisiert werden. Zudem können Materialverbünde wie kohlefaserverstärkte Werkstoffe ohne Verschleiß des Werkzeugs und mit geringem Wärmeeintrag in das Matrixmaterial bearbeitet werden. Die Entwicklung von Hochleistungs-UKP-Llaser mit mittleren Leistungen bis in den Multi-Kilowatt-Bereich ermöglicht dabei die entwickelten Prozesse zu skalieren und dadurch die Bearbeitungsdauer signifikant zu reduzieren.

Das Leistungsangebot des Fraunhofer ILT umfasst Machbarkeitsstudien, experimentelle Untersuchungen, Simulationen, Entwicklung von Systemkomponenten, Validierung von Anlagenkonzepten bis hin zur Umsetzung von Maschinenkonzepten.

Chromatisch konfokale 3D-Aufnahme einer ps-veredelten Pyramidenstruktur.
© Fraunhofer ILT, Aachen.
Chromatisch konfokale 3D-Aufnahme einer ps-veredelten Pyramidenstruktur.
Multistrahlabtrag.
© Fraunhofer ILT, Aachen.
Multistrahlabtrag.
Unterschiedliche Geometrien hergestellt mittels selektivem laserinduzierten Ätzen.
© Fraunhofer ILT, Aachen.
Unterschiedliche Geometrien hergestellt mittels selektivem laserinduzierten Ätzen.

Laserstrahlabtragen

  • Schmelzarme Ablation einer Vielzahl von Materialien (Metalle, Keramiken, Kunststoffe, Gläser, Verbundstoffe) mit hoher Präzision
  • Herstellung von Werkzeugen und Werkzeugeinsätzen
  • Herstellung funktionaler Oberflächen zur Änderung der Benetzbarkeit, des Reibverhaltens und optischer Eigenschaften
  • Strukturgrößen < 1 μm bei Oberflächengenauigkeiten < 200 nm

Laserstrahlbohren

  • Präzisionsbohren mit Durchmessern > 30 μm bei Bohrtiefen bis zu 2 mm
  • Mikrobohren mit Bohrdurchmessern < 1 µm

3D-Volumenstrukturierung

  • Herstellung von Wellenleitern in transparenten Materialien
  • Mikrostrukturierung durch selektives Ätzen

Multiphotonenpolymerisation

  • Herstellung von dreidimensionalen Polymermikrostrukturen mit lateralen Auflösungen < 1 µm

Verfügbare Lasersysteme

  • Pikosekundenlaser (λ = 355 nm, 532 nm, 1064 nm) bis P = 50 W, τ = 10 - 15 ps
  • Femtosekundenlaser (λ = 470 - 2700 nm) bis P = 1,5 W, τ = 100 fs und (λ = 1030 nm) bis P = 150 W, τ = 700 fs - 10 ps

Broschüren

Unsere Broschüren vermitteln einen schnellen Einblick in unsere Leistungsangebote. Detaillierte Informationen und einzelne Projektergebnisse finden Sie auch im Reiter »Projektergebnisse«.

 

»Mikro- und Nanostrukturierung mit Laserstrahlung«

 

»Bohren mit Laserstrahlung«

 

»Selektives Laserätzen von Glas und Saphir«

 

»Laserverfahren für die Wasserstoff­technologie«

 

»Applikationszentrum Laserstrukturierung für den Werkzeug- und Formenbau«

Video: Stifterverbandspreis für Multistrahl-Laserverfahren

Datenschutz und Datenverarbeitung

Wir setzen zum Einbinden von Videos den Anbieter YouTube ein. Wie die meisten Websites verwendet YouTube Cookies, um Informationen über die Besucher ihrer Internetseite zu sammeln. Wenn Sie das Video starten, könnte dies Datenverarbeitungsvorgänge auslösen. Darauf haben wir keinen Einfluss. Weitere Informationen über Datenschutz bei YouTube finden Sie in deren Datenschutzerklärung unter: https://policies.google.com/privacy

Der Ultrakurzpulslaser als Werkzeug für die Präzisionsfertigung findet eine immer breitere Akzeptanz unter den industriellen Anwendern. Insbesondere wird diese Entwicklung bedingt durch systemtechnische Neu- oder Weiterentwicklungen, welche eine signifikante Steigerung der Produktivität zulassen. Eine deutliche Produktivitätssteigerung war auch das Ziel eines Teams aus Industrie und Forschung, das auf der Jahrestagung der Fraunhofer-Gesellschaft am 9. Oktober 2020 den Wissenschaftspreis des Stifterverbands für Verbundforschung erhielt. Das Team hat eine Technologie entwickelt, bei der ein Laserstrahl in bis zu 16 Teilstrahlen aufgeteilt wird. Das sind 16 Werkzeuge, die parallel und individuell gesteuert für die Herstellung funktionaler Oberflächen eingesetzt werden können.

Video: Die nächste Generation der Hochleistungs-UKP-Laser für Industrie und Forschung

Datenschutz und Datenverarbeitung

Wir setzen zum Einbinden von Videos den Anbieter YouTube ein. Wie die meisten Websites verwendet YouTube Cookies, um Informationen über die Besucher ihrer Internetseite zu sammeln. Wenn Sie das Video starten, könnte dies Datenverarbeitungsvorgänge auslösen. Darauf haben wir keinen Einfluss. Weitere Informationen über Datenschutz bei YouTube finden Sie in deren Datenschutzerklärung unter: https://policies.google.com/privacy

Im Fraunhofer Cluster of Excellence Advanced Photon Sources CAPS bündeln 13 Fraunhofer-Institute ihre Expertise für die Entwicklung von Lasersystemen, die mit ultrakurzen Pulsen (UKP) höchste Leistungen erreichen, und erforschen deren Einsatzpotenziale. Die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für Angewandte Optik und Feinmechanik IOF in Jena bringen ihre Kompetenz in der Entwicklung von Hochleistungs-UKP-Lasern ein, die im Cluster mit der Expertise anderer Fraunhofer-Institute in den Bereichen Systemtechnik und Anwendungen kombiniert wird. 

Partner aus Industrie und Forschung sind dazu aufgerufen, sich zu beteiligen und die neuen Lasersysteme in den Applikationslaboren in Aachen und Jena für ihre Innovationen zu nutzen.

Branchen

Lasertechnik trägt in unterschiedlichen Branchen zur Lösung anspruchsvoller Aufgabenstellungen bei. Ob als Werkzeug in der Automobilfertigung, als Messmittel im Umweltbereich, als Diagnose- oder Therapieinstrument in der Medizintechnik oder als Kommunikationsmedium in der Raumfahrttechnik, der Laser bietet vielfache Einsatzmöglichkeiten mit hoher Produktivität und hoher Effizienz.

Auf den Branchen-Webseiten finden Sie weitere Informationen und eine Auswahl aus unserem Angebot.

 

Forschen Sie mit uns!

Bei Fragen zu übergreifenden Themen nehmen Sie einfach Kontakt mit uns auf! Unsere Ansprechpartner stehen Ihnen gerne zur Verfügung.

Publikationen

Kalupka C., Schmalstieg, M., Reininghaus, M.:
Ultrashort Pulse Processing of Transparent Ceramics: The Role of Electronic and Thermal Damage Mechanisms.
J LASER MICRO NANOEN 13(2), 126-130 (2018)

Gretzki, P., Gillner, A.:
Programmable diffractive optic for multi-beam processing: applications and limitations.
SPIE Nanoscience + Engineering, Aug. 25 2017, San Diego, California. Proc. of SPIE 10347, Optical Trapping and Optical Micromanipulation XIV, 103470V (13 S.) (2017)

Hördemann, C., Fornaroli, C., Gillner, A.:
Ultrashort pulsed laser-dicing of silicon wafers for the decollating of conventional and hybrid solar cells.
SPIE Organic Photonics + Electronics, August 06-10 2017, San Diego, California, United States. Proc. of SPIE Vol. 10363, 103632Z, (8 S.) (2017)

Boehr, S., Nolis, P., Brenner, A., Reininghaus, M., Lamß, M., Müller, B. :
Laserbasierte Fertigungstechniken und additive Fertigung.
Galvanotechnik 108, 1672-1677 (6 S.) (2017)

Großmann, D., Reininghaus, M., Kalupka, C., Jenne, M., Kumkar, M.:
In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation.
OPTICS EXPRESS 25 (23), 28478- (11 S.) (2017)

Carstens, H., Högner, M., Saule, T., Holzberger, S., Lilienfein, N., Guggenmos, A, Jocher, C., Eidam, T., Esser, D., Tosa, V. , Pervak, V., Limpert, J., Tünnermann, A., Kleineberg, U., Krausz, F., Pupeza, I.:
High-harmonic generation at 250  MHz with photon energies exceeding 100  eV.
Optica 3 Nr. 4, 366-369 (2016)

Grossmann, D., Reininghaus, M., Kalupka, C., Kumkar, M., Poprawe, R.:
Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser
Opt. Expr. 24, (20), 23221-23231 (2016)

Hambach, N., Hartmann, C., Keller, S., Gillner, A.:
High density perforation of thin Al-Foils with Ultra Short Pulse Lasers in dependence on the repetition rate
J. Laser Micro/Nanoeng, 11 (2), 192-198 (2016)

Kalupka, C., Finger, J., Reininghaus, M.:
Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses
J. Appl. Phys. 119, 153105 (5 S.) (2016)

Russbueldt, P., Mans, T., Hoffmann, D., Schippel, S.:
High-average power ultrafast Yb: Innoslab amplifier
In: Ultrashort Pulse Laser Technology: Laser Sources and Applications
Eds.: Nolte, S.; Schrempel, F.; Dausinger, F. Cham [u.a.]: Springer (2016), 117-134

Wueppen, J., Strotkamp, M., Hoffmann, D., Russbueldt, P., Mans, T., Fritzler, S., Schippel, S.:
Laser-triggered electron source for x-ray applications
In: Ultrashort Pulse Laser Technology: Laser Sources and Applications
Eds.: Nolte, S.; Schrempel, F.; Dausinger, F. Cham [u.a.]: Springer (2016), 337-349

Finger, J., Kalupka C., Reininghaus, M.:
High power ultra-short pulse laser ablation of IN718 using high repetition rates
J. Materials Processing Technol. 226 (Dec.), 221-227 (2015)

Reininghaus, M., Ivanov, D., Maß, T.W.W., Eckert, S., Juschkin, L., Garcia, M. E., Taubner, T., Poprawe, R.,
Nanophotonic applications of fs-laser radiation induced nanostructures and their theoretical description
Optically Induced Nanostructures. Hrsg. v. König, Karsten / Ostendorf, Andreas. Berlin: De Gruyter, 25-46 (2015)

Reininghaus, M., Kalupka, C., Faley, O., Holtum, T., Finger, J., Stampfer, C.:
Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite
Appl. Phys. A Online First (6 S.) (2014)

Finger, J., Weinand, M., Wortmann, D.:
Ablation and cutting of carbon-fiber reinforced plastics using picosecond pulsed laser radiation with high average power
J. Laser Appl. 25, (4), 042007-1 (5 S.) (2013)

Finger, J., Weinand, M., Wortmann, D.:
Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power
ICALEO, 32th International Congress on Applications of Lasers & Electro-Optics : October 6-10, 2013, Miama/Fl., USA, Paper 1905 (6 S.) (2013)

Scotti, G., Trusheim, D., Kanninen, P., Naumenko, D., Schulz-Ruhtenberg, M., Snitka, V., Kallio, T., Franssila, S.:
Picosecond laser ablation for silicon micro fuel cell fabrication
J. Micromech. Microeng. 23, 055021 (14. S.), (2013)

Tulea, C., Caron, J., Wahab, H., Gehlich, N., Hoefer, M., Esser, D., Jungbluth, B., Lenenbach, A., Noll, R.:
Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd:YVO4 picosecond laser
Proc. SPIE 8565, 85656 E-1 (11 S.) (2013)

Bello-Silva, . S., Wehner, M., de Paula Eduardo, C., Lampert, F., Poprawe, R., Hermans, M., Esteves-Oliveira, M.:
Precise ablation of dental hard tissues with ultra-short pulsed lasers
Lasers in Medical Science, (14 S.) (2012)

Holzberger, S., Pupeza, I., Esser, D., Weitenberg, J., Carstens, H., Eidam, T., Russbüldt, P., Limpert, J., Udem, T., Tünnermann, A., Hänsch, T., Krausz, F., Fill, E.:
Sub-25 nm High-Harmonic Generation with a 78-MHz Repetition Rate Enhancement Cavity 
Proc. CLEO: QELS-Fundamental Science, Optical  Society of America, QTh5B.7 (2012)

Hoerstmann-Jungemann, M., Dobrzanski, D., Schaefer, D., Kelbassa, I.:
Functionalization of sapphire surfaces using fs-laser radiation and selective etching
ICALEO. 30. Int. Congr. on Applications of Lasers and Electro-Optics, October 23-27, 2011. M 1203, 1105-1110, (2011)

Reininghaus, M., Finger, J., Faley, O., Wortmann, D., Stampfer, C.:
Non-thermal ablation of graphite by ultrashort pulsed fs-laser radiation
ICALEO. 30. Int. Congr. on Applications of Lasers and Electro-Optics, October 23-27, 2011. N 102, (8 S.) (2011)

Schaefer, D., Beckmann, D., Hoerstmann-Jungemann, M., Kelbassa, I.
Waveguides and markings inside transparent materials by fs-laser radiation
ICALEO 30. Int. Congr. on Applications of Lasers and Electro-Optics, October 23-27, 2011. M1004, (5 S.) (2011)

Trusheim, D., Schulz-Ruhtenberg, M., Smeets, M., Das, J., Wieduwilt, J.:
Influence of ultra-short pulse laser ablation of silicon nitride passivation layers on electronical cell properties
26th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Hamburg, (1 S.) (2011)

Wortmann, D., Reinighaus, M., Finger, J., Dold, C., Russbueldt, P., Poprawe, R.:
The physics in applications of ultrafast lasers
Proc. SPIE 8306, 830603, (6 S.) (2011)

Kelbassa, I., Wortmann, D., Mans, T., Gottmann, J., Russbueldt, P., Weitenberg, J., Brajdic, M., Hermans, M., Beckmann, D., Poprawe, R.:
High-power ultra-short pulse laser radiation: New sources as key enablers for emerging applications
Pacific International Conference on Applications of Lasers and Optics (PICALO), Shangri-La Hotel, Wuhan, China, (6 S.) (2010)

Esser, D., Mahlmann, D., Wortmann, D., Gottmann, J.:
Interference microscopy of femtosecond laser written waveguides in phosphate glass
Appl. Phys. B - Lasers and Optics 96 (2-3), (5 S.) (2009)

Mingareev, I., Horn, A.:
Melt dynamics of aluminium irradiated with ultrafast laser radiation at large intensities
J. Appl. Phys. 106, 13513, (7 S.) (2009)

Wortmann, D., Mingareev, I., Brand, A., Horn, A.:
Micro-welding of glass by fs-laser irradiation and process observation using fs-pump-probe white light interference microscopy
Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC 2009, Munich, Mulhouse: European Physical Society, CM2.2 THU, (1 S.) (2009)

Horn, A., Mingareev, I., Gottmann, J., Werth, A., Brenk, U.:
Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation
Meas. Sci. Technol 19, (6 S.) (2008)

Gottmann, J., Wortmann, D., Hörstmann-Jungemann, M.:
Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching
Appl. Surf. Sci. doi. 10.1016/j.apsusc.2008.10.097 (Online), (2008)

Wortmann, D., Gottmann, J.:
Fs-Laser structuring of ridge waveguides
Appl. Phys. A 93, 197-201, (2008)

Ganser, D., Starovoytova, L., Wortmann, D., Gottmann, J., Vasilief, I. Moiseev, L.:
Growth of Nd:Gd3Ga5O12 thin films by pulsed laser deposition for planar waveguide laser
J. Laser Micro/Nanoeng. 3, 19-23, (2008)

Poprawe, R., Gillner, A., Hoffmann, D., Gottmann, J., Wawers, W., Schulz, W.:
High speed high precision ablation from ms to fs
Proc. SPIE 7005, (12 S.) (2008)

Horn, A., Mingareev, I., Werth, A., Kachel, M., Brenk, U.:
Investigations on ultrafast welding of glass-glass and glass-silicon
Appl. Phys. A 93, 171-175, (2008)

Horn, A., Mingareev, I., Werth, A., Kachel, M.:
Joining of thin glass with semiconductors by ultra-fast high-repetition laser welding
Proc. SPIE 6880, (6 S.) (2008)

Gottmann, J., Moiseev, L., Vasilief, I., Wortmann, D.:
Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers
Mat. Sci. Eng. B 146, 245-251, (2008)

Gottmann, J., Wortmann, D., Wagner, R.:
Manufacturing of periodical nanostructures by fs-laser direct writing
Proc. SPIE 7022, 702202-1-702202-10, (2008)

Wortmann, D., Gottmann, J., Brandt, N., Horn-Solle, H.:
Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching
Opt. Expr. 16, Nr 3, 1517-1522, (2008)

Horn, A., Mingareev, I., Werth, A., Kachel, M., Brenk, U.:
Non-interferometric transient quantitative phase microscopy for ultrafast engineering
Appl. Phys. A 93, 165-169, (2008)

Mingareev, I., Horn, A.:
Time-resolved investigations of plasma and melt efections in metals by pump-probe shadowgraphy
Appl. Phys. A 92, 917-920, (2008)

Hörstmann-Jungemann, M., Gottmann , J., Wortmann, D.:
Time resolved measurement of the dielectric function during direct fs-laser writing of SiO2 and sapphire
Proc. LPM2008 - 9th Int. Symposium on Laser Precision Microfabrication
(5 S.) (2008)

Miyamoto, I., Horn, A., Gottmann, J., Wortmann, D., Yoshino, F.:
Fusion Welding of Glass Using Femtosecond Laser Pulses with High-repetition Rates
J. Laser Micro/Nanoeng. 2, 57-63, (2007)

Miyamoto, I., Horn, A., Gottmann, J.:
Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses
J. Lasermicro/Nanoeng. 2, 7-14, (2007)

Unsere Leistungsangebote decken ein weites Themenspektrum ab. Verwandte Themen zur Ultrakurzpulsbearbeitung und weitere Schwerpunkte aus Forschung und Entwicklung finden Sie unter den folgenden Links.